The following program calculates the minimum point of a multi-variable function using the Hooke-Jeeves directional search method.
Click here to download a ZIP file containing the project files for this program.
The program prompts you to either use the predefined default input values or to enter the following for each variable:
1. Guess for the minimum point.
2. Initial search step value.
3. The minimum search step value.
In case you choose the default input values, the program displays these values and proceeds to find the optimum point. In the case you select being prompted, the program displays the name of each input variable along with its default value. You can then either enter a new value or simply press Enter to use the default value. This approach allows you to quickly and efficiently change only a few input values if you so desire.
The program displays the following final results:
1. The coordinates of the minimum value.
2. The minimum function value.
3. The number of iterations
The current code finds the minimum for the following function:
f(x1,x2) = x1 - x2 + 2 * x1 ^ 2 + 2 * x1 * x2 + x2 ^ 2
Using, for each variable, an initial value of 0, initial step size of 0.1, minimum step size of 1e-7, and using a function tolerance of 1e-7. Here is the sample console screen:

Here is the listing for the main module. The module contains several test functions:
Module Module1
Sub Main()
Dim nNumVars As Integer = 2
Dim fX() As Double = {0, 0}
Dim fParam() As Double = {0, 0}
Dim fStepSize() As Double = {0.1, 0.1}
Dim fMinStepSize() As Double = {0.0000001, 0.0000001}
Dim nIter As Integer = 0
Dim fEpsFx As Double = 0.0000001
Dim I As Integer
Dim fBestF
Dim sAnswer As String
Dim oOpt As CHookJeevesSearch1
Dim MyFx As MyFxDelegate = AddressOf Fx3
Dim SayFx As SayFxDelegate = AddressOf SayFx3
oOpt = New CHookJeevesSearch1
Console.WriteLine("Hooke-Jeeves Search Optimization")
Console.WriteLine("Finding the minimum of function:")
Console.WriteLine(SayFx())
Console.Write("Use default input values? (Y/N) ")
sAnswer = Console.ReadLine()
If sAnswer.ToUpper() = "Y" Then
For I = 0 To nNumVars - 1
Console.WriteLine("X({0}) = {1}", I + 1, fX(I))
Console.WriteLine("Step size({0}) = {1}", I + 1, fStepSize(I))
Console.WriteLine("Min step Size ({0}) = {1}", I + 1, fMinStepSize(I))
Next
Console.WriteLine("Function tolerance = {0}", fEpsFx)
Else
For I = 0 To nNumVars - 1
fX(I) = GetIndexedDblInput("X", I + 1, fX(I))
fStepSize(I) = GetIndexedDblInput("Step size", I + 1, fStepSize(I))
fMinStepSize(I) = GetIndexedDblInput("Min step size", I + 1, fMinStepSize(I))
Next
fEpsFx = GetDblInput("Function tolerance", fEpsFx)
End If
Console.WriteLine("******** FINAL RESULTS *************")
fBestF = oOpt.CalcOptim(nNumVars, fX, fParam, fStepSize, fMinStepSize, fEpsFx, nIter, MyFx)
Console.WriteLine("Optimum at")
For I = 0 To nNumVars - 1
Console.WriteLine("X({0}) = {1}", I + 1, fX(I))
Next
Console.WriteLine("Function value = {0}", fBestF)
Console.WriteLine("Number of iterations = {0}", nIter)
Console.WriteLine()
Console.Write("Press Enter to end the program ...")
Console.ReadLine()
End Sub
Function GetDblInput(ByVal sPrompt As String, ByVal fDefInput As Double) As Double
Dim sInput As String
Console.Write("{0}? ({1}): ", sPrompt, fDefInput)
sInput = Console.ReadLine()
If sInput.Trim().Length > 0 Then
Return Double.Parse(sInput)
Else
Return fDefInput
End If
End Function
Function GetIntInput(ByVal sPrompt As String, ByVal nDefInput As Integer) As Integer
Dim sInput As String
Console.Write("{0}? ({1}): ", sPrompt, nDefInput)
sInput = Console.ReadLine()
If sInput.Trim().Length > 0 Then
Return Double.Parse(sInput)
Else
Return nDefInput
End If
End Function
Function GetIndexedDblInput(ByVal sPrompt As String, ByVal nIndex As Integer, ByVal fDefInput As Double) As Double
Dim sInput As String
Console.Write("{0}({1})? ({2}): ", sPrompt, nIndex, fDefInput)
sInput = Console.ReadLine()
If sInput.Trim().Length > 0 Then
Return Double.Parse(sInput)
Else
Return fDefInput
End If
End Function
Function GetIndexedIntInput(ByVal sPrompt As String, ByVal nIndex As Integer, ByVal nDefInput As Integer) As Integer
Dim sInput As String
Console.Write("{0}({1})? ({2}): ", sPrompt, nIndex, nDefInput)
sInput = Console.ReadLine()
If sInput.Trim().Length > 0 Then
Return Double.Parse(sInput)
Else
Return nDefInput
End If
End Function
Function SayFx1() As String
Return "F(X) = 10 + (X(1) - 2) ^ 2 + (X(2) + 5) ^ 2"
End Function
Function Fx1(ByVal N As Integer, ByRef X() As Double, ByRef fParam() As Double) As Double
Return 10 + (X(0) - 2) ^ 2 + (X(1) + 5) ^ 2
End Function
Function SayFx2() As String
Return "F(X) = 100 * (X(1) - X(2) ^ 2) ^ 2 + (X(2) - 1) ^ 2"
End Function
Function Fx2(ByVal N As Integer, ByRef X() As Double, ByRef fParam() As Double) As Double
Return 100 * (X(0) - X(1) ^ 2) ^ 2 + (X(1) - 1) ^ 2
End Function
Function SayFx3() As String
Return "F(X) = X(1) - X(2) + 2 * X(1) ^ 2 + 2 * X(1) * X(2) + X(2) ^ 2"
End Function
Function Fx3(ByVal N As Integer, ByRef X() As Double, ByRef fParam() As Double) As Double
Return X(0) - X(1) + 2 * X(0) ^ 2 + 2 * X(0) * X(1) + X(1) ^ 2
End Function
' X(0) - X(1) + 2 * X(0) ^ 2 + 2 * X(0) * X(1) + X(1) ^ 2
End Module
Notice that the user-defined functions have accompanying helper functions to display the mathematical expression of the function being optimized. For example, function Fx1 has the helper function SayFx1 to list the function optimized in Fx1. Please observe the following rules::
The program uses the following class to optimize the objective function:
Public Delegate Function MyFxDelegate(ByVal nNumVars As Integer, ByRef fX() As Double, ByRef fParam() As Double) As Double
Public Delegate Function SayFxDelegate() As String
Public Class CHookJeevesSearch1
Dim m_MyFx As MyFxDelegate
Protected Function MyFxEx(ByVal nNumVars As Integer, _
ByRef fX() As Double, ByRef fParam() As Double, _
ByRef fDeltaX() As Double, ByVal fLambda As Double) As Double
Dim I As Integer
Dim fXX(nNumVars) As Double
For I = 0 To nNumVars - 1
fXX(I) = fX(I) + fLambda * fDeltaX(I)
Next I
MyFxEx = m_MyFx(nNumVars, fXX, fParam)
End Function
Protected Function LinSearch_DirectSearch(ByVal nNumVars As Integer, ByRef fX() As Double, ByRef fParam() As Double, _
ByRef fLambda As Double, ByRef fDeltaX() As Double, ByVal fInitStep As Double, ByVal fMinStep As Double) As Boolean
Dim F1, F2 As Double
F1 = MyFxEx(nNumVars, fX, fParam, fDeltaX, fLambda)
Do
F2 = MyFxEx(nNumVars, fX, fParam, fDeltaX, fLambda + fInitStep)
If F2 < F1 Then
F1 = F2
fLambda += fInitStep
Else
F2 = MyFxEx(nNumVars, fX, fParam, fDeltaX, fLambda - fInitStep)
If F2 < F1 Then
F1 = F2
fLambda -= fInitStep
Else
' reduce search step size
fInitStep /= 10
End If
End If
Loop Until fInitStep < fMinStep
Return True
End Function
Public Function CalcOptim(ByVal nNumVars As Integer, ByRef fX() As Double, ByRef fParam() As Double, _
ByRef fStepSize() As Double, ByRef fMinStepSize() As Double, ByVal fEpsFx As Double, _
ByRef nIter As Integer, ByVal MyFx As MyFxDelegate) As Double
Dim I As Integer
Dim fXnew(nNumVars) As Double
Dim fDeltaX(nNumVars) As Double
Dim F As Double, fXX As Double, fLambda As Double
Dim fBestF, fLastBestF As Double
Dim bStop, bMadeAnyMove As Boolean, bMoved(nNumVars) As Boolean
m_MyFx = MyFx
For I = 0 To nNumVars - 1
fXnew(I) = fX(I)
Next
' calculate function value at initial point
fBestF = MyFx(nNumVars, fXnew, fParam)
fLastBestF = 100 * fBestF + 100
nIter = 1
Do
nIter += 1
For I = 0 To nNumVars - 1
fX(I) = fXnew(I)
Next I
For I = 0 To nNumVars - 1
bMoved(I) = False
Do
fXX = fXnew(I)
fXnew(I) = fXX + fStepSize(I)
F = MyFx(nNumVars, fXnew, fParam)
If F < fBestF Then
fBestF = F
bMoved(I) = True
Else
fXnew(I) = fXX - fStepSize(I)
F = MyFx(nNumVars, fXnew, fParam)
If F < fBestF Then
fBestF = F
bMoved(I) = True
Else
fXnew(I) = fXX
Exit Do
End If
End If
Loop
Next I
' moved in any direction?
bMadeAnyMove = True
For I = 0 To nNumVars - 1
If Not bMoved(I) Then
bMadeAnyMove = False
Exit For
End If
Next I
If bMadeAnyMove Then
For I = 0 To nNumVars - 1
fDeltaX(I) = fXnew(I) - fX(I)
Next I
fLambda = 0
If LinSearch_DirectSearch(nNumVars, fX, fParam, fLambda, fDeltaX, 0.1, 0.0001) Then
For I = 0 To nNumVars - 1
fXnew(I) = fX(I) + fLambda * fDeltaX(I)
Next I
End If
End If
fBestF = MyFx(nNumVars, fXnew, fParam)
' reduce the step size for the dimensions that had no moves
For I = 0 To nNumVars - 1
If Not bMoved(I) Then fStepSize(I) /= 2
Next I
' test function value convergence
If Math.Abs(fBestF - fLastBestF) < fEpsFx Then Exit Do
fLastBestF = fBestF
bStop = True
For I = 0 To nNumVars - 1
If fStepSize(I) >= fMinStepSize(I) Then
bStop = False
Exit For
End If
Next I
Loop Until bStop
For I = 0 To nNumVars - 1
fX(I) = fXnew(I)
Next I
Return fBestF
End Function
End Class
Copyright (c) Namir Shammas. All rights reserved.