The following program calculates the minimum point of a multi-variable function using random search method. The search selects random points within a given range for each variable. In each iteration, the new and old points form a path that is used to perform a linear search. This search improves the overall efficiency of the algorithm in finding the optimum.
The function Random_Search2 has the following input parameters:
The function generates the following output:
Here is a sample session to find the optimum for the following function:
y = 10 + (X(1) - 2)^2 + (X(2) + 5)^2
The above function resides in file fx1.m. The search for the optimum 2 variables has the search range between [-10 -10] and [10 10]. The search employs a maximum of 10000 iterations and a function tolerance of 1e-7:
>> [XBest,BestF,Iters]=Random_Search2(2, [-10 -10], [10 10],
1e-7, 10000, 'fx1')
XBest =
1.9999 -5.0000
BestF =
10.0000
Iters =
40
Notice how close the located optimum is to the actual one [-2 5]..
Here is the MATLAB listing:
function [XBest,BestF,Iters]=Random_Search2(N,XLo,XHi,Eps_Fx,MaxIter,myFx)
% Function performs multivariate optimization using the
% random search method with directional search.
%
% Input
%
% N - number of variables
% XLo - array of lower values
% XHi - arra of higher values
% Eps_Fx - tolerance for difference in successive function values
% MaxIter - maximum number of iterations
% myFx - name of the optimized function
%
% Output
%
% XBest - array of optimized variables
% BestF - function value at optimum
% Iters - number of iterations
%
XBest = XLo + (XHi - XLo) * rand(N);
BestF = feval(myFx, XBest, N);;
LastBestF = 100 * BestF + 100;
Iters = 0;
for i=1:MaxIter
Iters = Iters + 1;
X = XLo + (XHi - XLo) * rand(N);
DeltaX = XBest - X;
lambda = 1;
lambda = linsearch(X, N, lambda, DeltaX, myFx);
X = X + lambda * DeltaX;
F = feval(myFx, X, N);
if F < BestF
XBest = X;
LastBestF = BestF;
BestF = F;
end
if abs(LastBestF - BestF) < Eps_Fx
break
end
end
function y = myFxEx(N, X, DeltaX, lambda, myFx)
% Helper function
X = X + lambda * DeltaX;
y = feval(myFx, X, N);
% end
function lambda = linsearch(X, N, lambda, D, myFx)
% Perform linear search
MaxIt = 100;
Toler = 0.000001;
iter = 0;
bGoOn = true;
while bGoOn
iter = iter + 1;
if iter > MaxIt
lambda = 0;
break
end
h = 0.01 * (1 + abs(lambda));
f0 = myFxEx(N, X, D, lambda, myFx);
fp = myFxEx(N, X, D, lambda+h, myFx);
fm = myFxEx(N, X, D, lambda-h, myFx);
deriv1 = (fp - fm) / 2 / h;
deriv2 = (fp - 2 * f0 + fm) / h ^ 2;
diff = deriv1 / deriv2;
lambda = lambda - diff;
if abs(diff) < Toler
bGoOn = false;
end
end
% end
Copyright (c) Namir Shammas. All rights reserved.