The following program calculates the minimum point of a multi-variable function using the Fletcher-Reeves conjugate gradient method.
The function conjgrad has the following input parameters:
The function generates the following output:
Here is a sample session to find the optimum for the following function:
y = 10 + (X(1) - 2)^2 + (X(2) + 5)^2
The above function resides in file fx1.m. The search for the optimum 2 variables has the initial guess of [0 0]. The search employs a maximum of 1000 iterations and a function tolerance of 1e-7 :
>> [X,LastF,Iters]=conjgrad(2,[0 0],1e-7,1000,'fx1')
X =
2.0000 -5.0000
LastF =
39
Iters =
1
Here is the MATLAB listing:
function [X,LastF,Iters]=conjgrad(N,X,Eps_Fx,MaxIter,myFx)
% Function performs multivariate optimization using the
% Hooke-Jeeves search method.
%
% Input
%
% N - number of variables
% X - array of initial guesses
% Eps_Fx - tolerance for diffence in successive function values
% MaxIter - maximum number of iterations
% myFx - name of the optimized function
%
% Output
%
% X - array of optimized variables
% LastF - function value at optimum
% Iters - number of iterations
%
initStep = 0.1;
minStep = 0.000001;
LastF = feval(myFx, X, N);
[dfnorm,Deriv] = getgradients(X, N, myFx);
lambda = 0;
lambda = linsearch(X, N, lambda, initStep, minStep, Deriv, myFx);
X = X + lambda * Deriv;
bGoOn = true;
Iters = 0;
while bGoOn
Iters = Iters + 1;
if Iters > MaxIter
break;
end
dfnormOld = dfnorm;
DerivOld = Deriv;
[dfnorm,Deriv] = getgradients(X, N, myFx);
Deriv = (dfnorm / dfnormOld)^2 * DerivOld - Deriv;
if dfnorm < Eps_Fx
break;
end
lambda = 0;
lambda = linsearch(X, N, lambda, initStep, minStep, Deriv, myFx);
X = X + lambda * Deriv;
F = feval(myFx, X, N);
if abs(F - LastF) < Eps_Fx
bGoOn = false;
else
LastF = F;
end
end
% end
function y = myFxEx(N, X, DeltaX, lambda, myFx)
X = X + lambda * DeltaX;
y = feval(myFx, X, N);
% end
function [fnorm,Deriv] = getgradients(X, N, myFx)
for i=1:N
xx = X(i);
h = 0.01 * (1 + abs(xx));
X(i) = xx + h;
Fp = feval(myFx, X, N);
X(i) = xx - h;
Fm = feval(myFx, X, N);
X(i) = xx;
Deriv(i) = (Fp - Fm) / 2 / h;
end
fnorm = norm(Deriv);
% end
function lambda = linsearch(X, N, lambda, initStep, minStep, D, myFx)
f1 = myFxEx(N, X, D, lambda, myFx);
while initStep > minStep
f2 = myFxEx(N, X, D, lambda + initStep, myFx) ;
if f2 < f1
f1 = f2;
lambda = lambda + initStep;
else
f2 = myFxEx(N, X, D, lambda - initStep, myFx);
if f2 < f1
f1 = f2;
lambda = lambda - initStep;
else
% reduce search step size
initStep = initStep / 10;
end
end
end
% end
Copyright (c) Namir Shammas. All rights reserved.